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a b s t r a c t

This paper describes a model identification procedure for identifying an electro-thermal model of lithium
ion batteries used in automotive applications. The dynamic model structure adopted is based on an
equivalent circuit model whose parameters are scheduled on the state-of-charge, temperature, and cur-
rent direction. Linear spline functions are used as the functional form for the parametric dependence.
eywords:
ybrid vehicles
attery
ithium ion
odeling

ystem identification

The model identified in this way is valid inside a large range of temperatures and state-of-charge, so
that the resulting model can be used for automotive applications such as on-board estimation of the
state-of-charge and state-of-health. The model coefficients are identified using a multiple step genetic
algorithm based optimization procedure designed for large scale optimization problems. The validity of
the procedure is demonstrated experimentally for an A123 lithium ion iron-phosphate battery.

© 2010 Elsevier B.V. All rights reserved.

utomotive

. Introduction

In recent years, the use of hybrid powertrain technology has
ecome a very effective method of improving fuel economy for
utomobiles. Vehicles with hybrid powertrains contain two or
ore separate power sources that are selected to complement each

ther as well as to provide added capabilities (such as regenerative
raking) to improve the efficiency of the overall operation. Almost
ll commercial form of hybrid powertrain involves some combi-
ation of an internal combustion engine (ICE) and one or more
lectric machines (EM) (often referred to as hybrid electric vehi-
les, or HEV). While the ICE derives its power from fossil fuel, the EM
btains its energy from a battery pack. In order to minimize weight
nd size and still meet the energy and power demand while driving,
ypical battery cells have high power and high energy density. In
lder generations of HEVs (such as the Toyota Prius), nickel-metal
ydride (NiMH) cells have been the battery choice due to their

ower prices and good energy density. This choice is appropriate for
EVs that operate exclusively in a charge-sustaining mode, where

he battery pack is maintained in a narrow range around a selected

tate-of-charge (SoC). Plug-in hybrid vehicles (PHEV) that require
lectric traction for extended periods, in a charge depleting mode,
emand much more from the battery pack. In addition, their need
or an all-electric range (AER) requires significantly more energy
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on-board. With the emergence of PHEVs, the vehicle electrification
industry has opted to use the higher energy/power density lithium
ion batteries.

Managing the battery pack for P/HEVs is a challenging prob-
lem. The objective of decreasing fossil fuel consumption while
increasing drivability is in conflict with the objective of prolong-
ing the life of the battery pack. If the full energy content of the
battery pack is used, then clearly more gains are possible. How-
ever, the life of a rechargeable battery is significantly shortened
when the battery is fully discharged or overcharged. In addition,
overcharging (especially in the case of the lithium ion battery)
can lead to catastrophic failure in the form of thermal runaway.
Therefore, combining the objectives of improving fuel economy
and drivability with battery life maximization dictates the require-
ment for careful SoC management of the battery. Furthermore, as
batteries age, they become less able to store and supply energy.
Consequently, the battery management system must be aware of
the state-of-health (SoH) of the battery pack so that the vehicle con-
trol strategies can be adjusted accordingly. Having accurate models
for use in estimating these critical characteristics, particularly
for on-board vehicle application, therefore becomes an important
requirement.

State-of-charge is commonly defined as the ratio between the
amount of charge stored in the battery to the amount of charge that
can be stored when the battery is fully charged. As such, SoC can

be estimated by integrating the current going in and out of the bat-
tery pack. However, system noise and sensor calibration can render
the electrical current measurement inaccurate, resulting in poten-
tially large errors over time when that measurement is integrated.
Another way to estimate the SoC is via the open circuit voltage
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OCV), taking advantage of the fact that a one-to-one mapping
xists between the SoC and the OCV at a given temperature. How-
ver, the sensitivity of SoC to errors in OCV is very high due to
he flatness of the OCV dependence on SoC for lithium ion batter-
es (see [1–3]). Because of various dynamics that characterize the
attery behavior, a sufficiently accurate OCV can only be obtained
fter a long rest period (often several hours). This method for SoC
stimation is therefore not realistic in real-time operation when the
attery is constantly being used. Consequently, sole dependence on
irect measurements typically does not produce accurate or useful
stimates for SoC. SoH estimation is very similar to SoC estima-
ion in terms of measurement difficulties. For example, a common
ay to quantify the SoH is via the capacity of the battery. However,

s P/HEV batteries are never fully discharged, the capacity cannot
e measured directly. In addition, any solution used to solve these
stimation problems must be implementable on-board in real time,
equiring only standard on-board measurements. This effectively
ules out indirect frequency domain based ideas such as proposed
n [4].

Of the many algorithms proposed in the literature to solve
he SoC and SoH estimation problems (see [5] for a summary of
asic algorithms used), model-based algorithms (such as extended
alman filter [6,7] and sliding mode observers [8]) are attractive
ecause they are efficient, robust, and do not require significant
uning, which is typical for numerically based methods such as arti-
cial neural networks [9]. In order for model-based algorithms to be
idely applicable, a control-oriented dynamic model is needed. The

wo types of models that are commonly used to describe the input-
o-output behavior of a battery are electrochemical models [10]
nd equivalent circuit models [11]. Complexities of electrochem-
cal models generally prohibit them from being used effectively
n solving on-board estimation problems. Equivalent circuit mod-
ls represent a simplification of electrochemical models by using
lectrical circuit elements to describe the battery behavior. For
xample, charge transfer across a boundary can be represented by
resistor in parallel with a capacitor, wherein ion diffusion can

e represented by wave propagation on a transmission line. The
ppropriate construction of the equivalent circuit can be obtained
ia electrochemical impedance spectroscopy. Equivalent circuit
odels obtained this way are capable of exhibiting accuracy over
wide frequency range. However, very accurate equivalent circuit
odels tend to require distributed or nonlinear elements such as

ransmission line elements and Warburg impedances, which make
n-board real-time application problematic. As seen in [12] how-
ver, battery responses at room temperature to typical current
nputs seen in automotive applications can be approximated using
n equivalent circuit that only contains resistors and capacitors. In
uch a model, circuit elements are scheduled on SoC and current
irection. Models of this type are well suited for model-based algo-
ithms. The primary shortcoming of the model presented in [12] is
he fact that isothermal conditions were assumed. Because temper-
ture can significantly affect battery behavior (such as increasing or
ecreasing the internal resistance), models that do not account for
emperature change must themselves be scheduled or otherwise
ave limited use as part of a realistic on-board battery management
ystem.

In this paper, the model in [12] is extended to include tem-
erature dependence. The model is based on an equivalent circuit
onsisting of a voltage source and parallel resistor and capacitor cir-
uits. Temperature dependence is addressed by allowing the model
arameters to be dependent on temperature as well as SoC and

urrent direction, resulting in a structure with a non-trivial num-
er of unknown coefficients to be identified. These coefficients are

dentified in a multiple step genetic algorithm (GA) based optimiza-
ion procedure, designed for large scale optimization problems.
he identification procedure is discussed in detail for a modeling
Fig. 1. Equivalent circuit used for battery model.

process with validation on an A123 lithium ion iron–phosphate
battery.

2. Battery model

Because the intended application for this model is for use in
on-board estimation problems, the equivalent circuit structure
employed herein will contain no distributed elements (such as
transmission line) and nonlinear or pure frequency domain quanti-
ties such as the Warburg impedance. The resulting model structure
may therefore be characterized using ordinary differential equa-
tions, where the specific structure selected is the Randle equivalent
circuit shown in Fig. 1. The circuit is comprised of an ideal OCV, an
internal resistance R0, and n parallel RC circuits to approximate the
battery dynamics. While not the most sophisticated model struc-
ture possible, this structure is selected because of its simplicity and
universality. As reported in the earlier work [12], this structure pro-
vided a very good approximation for lithium ion battery dynamics
at room temperature. Therefore, a natural next step is an extension
to the case of multiple temperatures.

The dynamic equation that describes the voltage across the ith

RC circuit is given by

dVi

dt
= 1

RiCi
Vi + 1

C
I. (1)

For convenience in identification, this equation can be viewed as a
first order dynamic system in the form

dVi

dt
= −AiVi + AiBiI, (2)

where Ai = 1/(RiCi) and Bi = Ri are the inverse of time constant and
input coefficients, respectively. For now, Ri and Ci (consequently
Ai and Bi) are assumed to be dependent in some fashion on oper-
ating conditions. The precise nature of this dependence, and its
justification, are discussed later.

The OCV in this equivalent circuit model is a function of the SoC.
Technically, the OCV can have small variation with respect to the
temperature. However, in experimental data collected, this differ-
ence is inconsistent and very small, so in this work the OCV is not
parameterized as a function of the temperature. The SoC variation
for a fixed temperature has a particular form. That is, the battery
terminal voltage drops quickly as the SoC approaches 0% and rises
as SoC reaches around 100% [13]. In a relatively large transitional
portion of the SoC, the relation is nearly linear, and throughout the
region the OCV is a strictly increasing function of the SoC. Given

these characteristics, the OCV is modeled herein by a double expo-
nential function as

Voc(z) = V0 + ˛(1 − exp(−ˇz)) + �z + �
(

1 − exp
(

− ε

1 − z

))
, (3)
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asymmetry used in the first half of the dataset. This allows the SoC
of the battery to increase toward 100%. Clearly the response of the
second half does not mirror that of the first half, indicating that the
coefficients also depend on the current direction.
Y. Hu et al. / Journal of Pow

here z is the SoC in decimal form (i.e. z ∈ [0,1]) and ˛, ˇ, .., ε are
unable parameters.

The second component of the battery model involves the capac-
ty and the SoC. To address this, first define the nominal capacity Cn

f a battery to be the amount of ampere-hours that can be drawn
rom the battery at 1 C-rate discharge at room temperature after
full charge (this is accomplished using protocols specified by the
anufacturer, typically constant current to a given maximum volt-

ge followed by constant voltage for a set period of time) before
he battery reaches its minimum terminal voltage. Then the SoC of
he battery, denoted by z, can be defined using standard Coulomb
ounting as

˙ = − 1
3600Cn

I. (4)

ther than as a component of the model, this formulation of SoC is
lso used to compute the true SoC for experimental datasets used
n modeling and validation. Note that over a long period of time,
oulomb counting becomes inaccurate as a method of tracking the
oC. However, when datasets are kept short and processed carefully
off line), the accuracy of this technique is adequate.

As noted in the literature [3], if a battery is excited and then
llowed to relax for long periods of time, due to electrical fields
nside the battery caused by charges aligned during the excita-
ion as well as diffusion effects, the rested terminal voltage at the
ame SoC varies depending on the type, duration, and strength of
he previous excitation. To adequately capture this phenomenon,
hysteresis voltage element is appended to the equivalent circuit.
s the hysteresis voltage is only changed when the battery is being
harged or discharged (i.e. when the SoC varies), the dynamic equa-
ion for the hysteresis should be stationary when input current is
ero.

In this work, a first order equation is selected to model the
ynamics of the hysteresis voltage Vh in the manner

˙ h = � (T)|I|(H(z, sign(ż), T) − Vh) (5)

here � can be thought of as a hysteresis transition factor (i.e.
ow fast the hysteresis occurs) and H is the maximum amount
f hysteresis voltage that can occur for a given SoC (z) and tem-
erature (T). Depending on whether the battery is being charged
r discharged, the sign of Vh as a contribution to the battery ter-
inal voltage will differ. Therefore, H is also a function of the

urrent direction, indicated by sign(ż). To make the model more
exible, � is allowed to be a function of temperature. This allows
he maximum hysteresis to be reached at different rates for differ-
nt temperatures. Note here that the absolute value of the current
s multiplied by the transition factor � so that if no current is being
ushed or drawn, the hysteresis voltage does not change, which is
onsistent with the requirement discussed earlier. Also based on
his equation, the maximum hysteresis voltage is reached faster if
he current magnitude is higher, again consistent with the physical
ature of the battery.

Finally, the battery terminal voltage can be expressed as the sum
f all the voltage components discussed previously:

batt = Voc − R0I −
n∑

i=1

Vi − Vh. (6)
ote that the signs of the Vi are selected based on the standard
urrent convention (negative current means charging and positive
urrent means discharging). The signs of the hysteresis voltages are
elected to be the same as those of the Vi. This tacitly implies that
is positive when discharging and negative when charging.
Fig. 2. Battery response to a series of asymmetric steps at −15 ◦C.

2.1. Parameter scheduling

Many parameters of the model formulated above depend on the
operating conditions. The three primary operating conditions are
determined by the current input, temperature, and SoC. Fig. 2 shows
the voltage response of a test lithium ion battery being repeatedly
excited with a set of asymmetric discharging and charging steps at
−15 ◦C (data collection will be discussed in Section 4). In the first
half of the dataset, the duration of the charging steps is only half
to that of the discharging steps, thus causing the battery SoC to
decrease gradually toward zero. The voltage response of the bat-
tery varies drastically between high SoC and low SoC, suggesting
that coefficients describing the dynamics of the battery should be
scheduled on SoC. Fig. 3 shows the same set of current steps for the
battery at 5 ◦C; note that the responses at 5 ◦C differ significantly
from those of −15 ◦C. Therefore, in the dynamic relationship of the
model, parameters should also depend on the temperature. In the
last half of the dataset shown in Fig. 2, a set of charging steps fol-
lowed by a set of discharging steps is carried out, replicating the
Fig. 3. Battery response to a series of asymmetric steps at 5 ◦C.
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sum of squared errors at the sample points. As reported previous
work [12], this choice of the error metric produces good results
when compared with various other norms.

Table 1
Coefficient parametric dependence.
52 Y. Hu et al. / Journal of Pow

Because the exact dependence of the coefficients on the parame-
ers is largely unknown and nonlinear, the functional form used for
cheduling should be flexible enough to have no presumed shape,
ut at the same time should be convenient to define and evaluate.
or the dependence on current direction, two sets of coefficients
an be utilized, one for charging and one for discharging. Zero cur-
ent behavior after charging will be considered charging, while zero
urrent behavior after discharging is considered discharging. For
he dependence on SoC and temperature, a typical solution is to
se polynomial functions. While polynomial functions have the
dvantage of being smooth, their coefficients tend to be difficult
o bound, which presents a challenge in parameter optimization
or the coefficients. Therefore, instead of using polynomials, lin-
ar spline functions are used [14,15]. A linear spline function is a
ontinuous piecewise linear function defined over a hypercube. To
efine a linear spline function, the function domain must be par-
itioned; by doing so in an arbitrarily fine manner, linear spline
unctions can be used to approximate any continuous function on
hat domain.

To construct a linear spline function, an arbitrary choice for the
inear functions on each partition is not acceptable because of the
ontinuity constraint; thus, a construction form is needed. This
s obviously critical in a system identification algorithm as well,

here a particular structure for coefficients is required. The stan-
ard representation for a linear spline function is via the so-called
-spline representation.

Let s and t be two independent variables (for example SoC and
emperature). Without loss of generality, assume the domain of s
o be [si, sf] and the domain of t to be [ti, tf]. Define the domain of
s,t) to be the hypercube [si, sf] × [ti, tf]. Let a partition of s be [s0 = si,
1, . . ., sn = sf] and let a partition of t be [t0 = ti, t1, . . ., tm = tf]. Define
unctions Ui for i = 1, 2, . . ., n as

i(s) =
{

s − si s > si

0 else
(7)

imilarly define functions Vj for j = 1, 2, . . ., m to be

j(t) =
{

t − ti t > ti

0 else
(8)

f f(s) is a linear spline function with the partition given for s, then
(s) can be written uniquely as

(s) = K0 +
n−1∑
i=1

KiUi(s). (9)

f g(s,t) is a 2D linear spline function with the partitions given for s
nd t, then g(t,s) has a unique representation

(t, s) = J0 +
n−1∑
i=1

JiUi(s) +
m−1∑
j=1

LjVj(t). (10)

The P-spline construction provides a very convenient way of
valuating a linear spline. Given s and t, first evaluate the basis func-
ions Ui(s) and Vj(t). Then (9) and (10) can be used to calculate the
pline value for 1D and 2D splines, respectively. However, when
earching for the best fitting linear spline to some data, bounds
ust be specified for the coefficients Ki or Ji and Lj. This can be diffi-

ult to do because these coefficients are essentially slopes. Another
quivalent form exists where the spline function is specified via the
alues of the spline functions. For 1D splines, if the values of the

pline functions are given on the knots, then the spline function is
ully specified. For 2D splines, if the values of the function are spec-
fied on the knots around the left and lower boundaries (see Fig. 4
or an illustration), then the spline is fully specified. These facts can
e proved by noting that (9) and (10) evaluated at the locations
Fig. 4. Values needed to fully specify a 2D linear spline function.

described provide an invertible map between the values and the
spline coefficients as long as the spline knots are distinct (which is
assumed in our case). This value form of the linear spline function is
convenient for identification because one can often find reasonable
bounds for the coefficient values.

Using this formulation, the coefficient dependence on operating
conditions can now be expressed. Table 1 depicts the parameter
dependence of the model coefficients. Because the precise depen-
dences of Ai, Bi, H and � on SoC and temperature are unclear from
a physical perspective, all are considered to be generic functions of
SoC and temperature. However, experimentation has shown that �
changes very little with respect to the SoC; therefore, in the interest
of limiting the number of unknowns to be optimized, � is selected
to be a function of temperature only. Coefficients that depend on
both SoC and temperature employ a 2D linear spline parameteri-
zation, whereas those that only depend on temperature use a 1D
linear spline representation. Because the dynamic equations are
linear (the algebraic output equation contains the only nonlinear-
ity), the overall system with these parametrized coefficients is a
quasi-linear parameter varying system [12].

3. Model identification

The model represented by (2) through (6) contains a large num-
ber of unknown coefficients that must be identified. Because the
model is a continuous time differential equation in state vari-
able form with nonlinear elements (though only in the output),
approaches such as least squares [16] or subspace identification
[17] used for linear parameter varying discrete systems are not
easily applicable. Instead, the coefficients will be identified using
an optimization procedure where the objective is to minimize
the error between the measured battery terminal voltage and the
model terminal voltage. The cost function to be minimized is the
Coefficient SoC Temperature

Ai × ×
Bi × ×
H × ×
� ×
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.1. Input design

The first step in any model identification exercise is usually to
ollect physical data from the system being modeled. The data must
e such that the model coefficients resulting in the best fit based
n this data produce the best approximation to the battery dynam-
cs. In this particular case, the dataset should obviously contain the
ntire range of SoC and temperature being modeled. While joint
ariation of SoC and temperature is certainly possible, tempera-
ure measurements tend to be inaccurate in a dynamical setting.
herefore a good approach is to grid the temperature space into
everal distinct temperatures. Then for each temperature, design
dataset that traverses the SoC range of interest. This obviously

ssumes that the battery behavior is continuous over temperature
ariations, so that for temperatures in between the gridded tem-
eratures, interpolation produces accurate results. For datasets at
ach fixed temperature, the input signal should span all relevant
ime scales; as reported in [12], combinations of asymmetrical steps
nd pulses are a good choice. A dataset constructed in this way is
epresentative of the type of data commonly seen in P/HEV opera-
ion, and is conducive for use with a variety of testing equipment
unlike white noise, chirp or some other signals commonly used
or model identification). By including steps and pulses of various
mplitude and duration, the dynamics described by the model can
e excited sufficiently.

.2. Optimization

The coefficient identification procedure uses a genetic algorithm
ased optimization routine, and is based on the process used for
ingle temperature model identification. That is, the identification
rocess is broken down into two segments: first identify a con-
tant parameter model for that temperature; then use this constant
arameter model as the starting point to find the SoC-dependent
odel. This two-step process is utilized to deal with the large num-

er of unknowns that characterize the fully parameterized model.
his basic procedure is modified for the multi-temperature case as
ollows:

. Choose a desired model order. Then design and collect model-
ing datasets at different temperatures, including one at room
temperature.

. Apply single temperature identification for the room temper-
ature dataset. This not only provides a model for the specific
condition represented by that dataset, but also provides an open
circuit voltage function to be used for other temperatures.

. Using the OCV function identified for the room temperature
dataset, identify the dynamic model equation coefficients for
the other temperatures. Because the OCV is not dependent on
temperature, the OCV curve is found once.

. Interpolate the single temperature models using linear spline
functions. In other words, if a coefficient is dependent on both
SoC and temperature, then perform a secondary least squares
fitting of a 2D linear spline function using the identified single
temperature coefficients as the data. If a coefficient is not depen-
dent on SoC but is different for each temperature, then a 1D linear
spline is used.

. Perform a global optimization over all the datasets using the
interpolated coefficients as the starting point. While some sin-

gle temperature coefficients are very smooth with respect to
temperature, others are not. Thus, in a sense the interpolation
process degrades optimality of the model coefficients. Therefore,
it is important to re-optimize the coefficients jointly to regain
global optimality.
rces 196 (2011) 449–457 453

The most important feature of this identification procedure is
that prior to each optimization step, a good initialization is always
available. For a global model with hundreds of unknown coeffi-
cients, lack of good initialization will often prevent the optimization
from finding a useful solution.

3.3. Numerical considerations

An unforeseen numerical issue surfaced during the global opti-
mization process in this work. When using the value form of the
2D linear spline functions (recall that this is basically the value of
the function on the knots along the left and bottom boundary) to
optimize for the coefficients, the values of the linear spline func-
tion on the top right corner can exceed the appropriate boundaries,
especially for R0 and Bi. Physically, this is because the internal resis-
tance of the battery tends to grow in a rapid fashion as temperature
and/or SoC decrease. The rate of this decrease is nearly exponential.
As such, sometimes the values of these coefficients as identified can
become either too large or even negative at some locations, despite
being well bounded on the left and bottom boundaries. A simple
and yet effective solution to resolve this issue is to prescale these
coefficients via a monotonically increasing function. In this case,
because the parametric variation shows an almost exponential
trend, a log function is used. For example, rather than identifying
R0, it is more convenient to identify log(L × R0), where L is a conve-
nience factor that is used to make log(L × R0) positive. An additional
advantage of using this prescaling is that the log version reduces
the effect of outliers. Therefore it also acts as a filter of sorts so
that the least squares fit during the interpolation step is more bal-
anced. Note that this idea is not exclusive to linear spline functions.
For example, this prescaling concept can be applied to polynomial
functions, which are even more difficult to keep inside a boundary
because of sensitivity to certain coefficients.

4. Model construction and validation

In this section, the results of a modeling exercise for a sin-
gle cell lithium ion battery are presented. The battery used is an
A123 lithium ion iron–phosphate cell (model 26650) with nominal
capacity of 2.3 Ah and nominal voltage of 3.2 V. While not used on a
wide scale in automotive applications (which focus more today on
large capacity prismatic cells), this battery is easily available and
has been widely evaluated for many different types of applications
(hence does not involve issues of working around proprietary infor-
mation). However, the procedure described here applies equally to
other lithium ion cells. The temperature range of interest selected
is from −15 ◦C to 45 ◦C. The SoC region of interest is selected to be
from 15% to 90% for temperatures at or higher than 0 ◦C and 25%
to 90% for temperatures below 0 ◦C. This particular choice of SoC
is due to the difficulties in operating the battery at lower temper-
ature in the low SoC region. For example, at −15 ◦C and 20% SoC,
even discharge at 1 C rate for a few seconds will cause the battery
voltage to drop drastically below the factory specified minimum of
2 V. Therefore, designing a dataset for low SoC and low temperature
is impractical unless very small currents are used. Furthermore, in
practical automotive applications (even PHEV), the battery is not
operated in the low temperature, low SoC region; therefore, this
limitation does not detract from the utility of the model.

4.1. Experimental setup and data collection
The experiments were carried out in the battery characteriza-
tion and aging laboratories at the Center for Automotive Research.
This laboratory contains multiple stations capable of running tests
of arbitrary lengths and can accommodate 24/7 unattended opera-
tion if needed. Each station testing a single cell or module is based
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Fig. 5. Typical period of the asymmetrical step current profile.

The order of the model is selected to be three so that a dura-
tion of three time constants can be represented. The SoC partition
for the parameter space is selected to be [10, 15, 20, 25, 35, 45,
54 Y. Hu et al. / Journal of Pow

n a pair of programmable load and power supply, a data acqui-
ition and control computer and Peltier junctions and associated
ontrollers to provide a controlled thermal environment for the
attery specimen under test for temperatures ranging between
25 ◦C and +60 ◦C. Each experimental station consists of an 800 W
rogrammable electronic load and a 1.2 kW programmable power
upply. The load and supply are controlled by a dual core computer
unning two instances of Matlab. The first instance is responsible
or process control (monitoring and running the desired current
rofiles and built-in safety features). It is designed to allow for
ulti-day testing with error checking and text-messaging (SMS)

ervices. The second instance is solely responsible for data acqui-
ition. This experimental setup is a member of a large cluster of
dentical stations that allow for large scale battery testing and dis-
ributed data acquisition. The battery voltage is measured at the
erminals of the battery at a sampling rate of 10 Hz. To ensure very
ight tolerance on the battery temperature under any current pro-
le, each test specimen is fixed in a specially machined aluminum
late with a large thermal mass, sandwiched between the Peltier

unctions. The testing stations are calibrated on a regular basis to
uarantee the best possible sensor measurements. The calibration
ata is used in the post processing of the testing data.

Data collection for multi-temperature modeling is in itself an
rt. Because the true SoC of the dataset can only be calculated via
urrent integration, the initial condition of the SoC must be assessed
arefully. Thus, prior to collecting each dataset, the battery is always
harged to 100%. The charging process specified by the manufac-
urer is only valid for room temperature. If the same procedure is
pplied when the battery is at a different temperature (particu-
arly the very low temperatures), the result of the charge can be
ignificantly different from the same process at room temperature
ecause the battery accepts charge differently at different temper-
tures. Therefore, to keep the datasets as uniform as possible, the
rocess of charging to 100% is always carried out after the battery
as been soaked at room temperature for 3 h. After the charging is
ompleted, the battery is soaked at the desired testing temperature
or three hours before any test is run. This is the only way of guar-
nteeing that the initial SoC is always known. Furthermore, the 3-h
est prior to the starting of the experiment ensures that the battery
s at rest to begin the experiment. In this way, the initial conditions
or Vi and Vh can be taken to be zero.

.2. Current profile

Two types of current profiles are used to calibrate the model
oefficients. The first is a series of asymmetrical step profiles (one
ypical period of the step is shown in Fig. 5). This profile is designed
o allow the SoC of the battery to travel from the high limit to low
imit (Fig. 6) with current steps as large as 6 C and as low as 2 C.
his type of profile is used to emulate battery excitation during
HEV operations. The alternating charging and discharging steps,
nd alternating periods, provide sufficient excitation to correctly
dentify the coefficients. The asymmetrical profile is performed for
ach temperature. A second type of current profile used is the pulse
rofile, where symmetrical charge and discharge pulses (Fig. 7) are
erformed around several nominal SoC values, between 50% and
0% SoC (Fig. 8). The purpose of this profile is to emulate HEV
harge-sustaining operations. The magnitude of the pulses range
rom 2 C to 16 C, which is characteristic of the rates seen in HEV
peration. The pulse profile is only performed for temperatures

bove 15 ◦C because at lower temperatures, the higher internal
esistance of the battery causes over-voltage. Note that in vehi-
le operation, battery packs are typically temperature controlled,
o that it is unlikely that a battery will need to supply high currents
t very low temperature.
Fig. 6. SoC due to the asymmetrical step current profile.

4.3. Model identification
Fig. 7. Typical period of the pulse current profile.
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Fig. 8. SoC due to the pulse current profile.

0, 70, 75, 80, 85, 90] and the temperature partition is selected
o be [−15, −10, −5, 0, 5, 15, 25, 35, 45] (temperatures at which
ata is collected). First, the room temperature model is identified,
esulting in a model with very good agreement to both the step and
ulse profiles; see Fig. 9 where the model result (solid line) prac-
ically lies atop the measured (dashed), with 15 mV of RMS error.
ecause the OCV curve identified at room temperature (25 ◦C) is
o be used for all subsequent identifications, the identified curve
s compared to a measured curve. The OCV measurement is done
y repeated discharges of 5% of the SoC with an hour of rest after-
ard to relax the dynamics, after which a mirror charging process is
erformed. Because of hysteresis and long battery dynamics, after
n hour of rest the OCV is not the true OCV. Therefore the voltage
easured during the discharging is taken to be a lower bound and

he voltage measured during the charging is taken to be an upper
ound. As Fig. 10 illustrates, the identified OCV resides between the
wo measured curves, providing a level of confidence that the room
emperature model identification was successful.

The next step is to identify various single temperature models
sing the same process; except for the two lowest temperatures,

he models fit the data very well. For the very low temperatures, the
attery behavior is highly nonlinear, especially during discharge, as
ven small current over a short period produces a very large voltage
rop, which the model has difficulty capturing. Nevertheless, prior

Fig. 9. Fit of the model to the pulse profile data at 25 ◦C (RMS error = 15 mV).
Fig. 10. Identified open circuit voltage compared with the measured.

to the voltage drop, the model still captures the battery behavior
(more details later).

Next the identified single temperature model coefficients are fit-
ted to 2D linear spline functions, after which the fitted coefficients
are jointly optimized over all the temperatures. Figs. 11 and 12
show the internal resistances in charge and discharge respec-
tively as functions of the SoC and temperature. Three things are
immediately obvious from these two figures. First, the internal
resistance shows a smooth increase as temperature decreases;
which is consistent with physical explanations from an electro-
chemical analysis. Secondly, as the SoC increases toward 100% or
decreases toward 0%, the internal resistance also increases, an effect
that is especially clear at lower temperatures. This, too, is consistent
with the observed data where the battery voltage either increases
rapidly near 100% or decreases rapidly near 0%. Furthermore, the
charge and discharge internal resistances show different behavior
as they approach the extreme SoCs, as expected.

Table 2 summarizes the root mean square (RMS) errors of
the model identified over the various datasets. RMS error is used

because it has the units of volts, which is easy to visualize. From
these results, two trends are obvious. As temperature decreases,
the size of the error increases. This is primarily because the bat-
tery behavior becomes highly nonlinear as temperature decreases.

Fig. 11. Identified charging internal resistance as a function of SoC and temperature.
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Fig. 12. Identified discharging internal resistance as a function of SoC and temper-
ature.

Table 2
RMS error of the model over the modeling datasets.

Temperature (◦C) Profile RMS error (V)

−15 Step 0.081
−10 Step 0.049
−5 Step 0.036

0 Step 0.028
5 Step 0.018

15 Step 0.018
15 Pulse 0.014
25 Step 0.015
25 Pulse 0.013
35 Step 0.016

N
f
a
i
F
l
a

35 Pulse 0.011
45 Step 0.013
45 Pulse 0.010

otice that from −5 ◦C to 45 ◦C, the size of the error is still very small
or equivalent circuit models. As for the single temperature models,
t −10 ◦C and especially at −15 ◦C, the model has difficulty captur-

ng the voltage drop during the net discharging phase, as seen in
ig. 13 (once again, the model response is represented by the solid
ine, whereas the dashed line shows the measured data). However,
s Fig. 13 also shows, the model fits the data well in other areas of

Fig. 13. Model fit for the step profile data at −15 ◦C.
Fig. 14. Current profile for one measured driving sequence in the validation profile.

the profile. In the next section, validation exercises are illustrated
for a different profile, but these results suggest that the model has
captured dynamics sufficiently to be useful in estimation problems.

4.4. Model validation

To ensure that the battery model works well in realistic settings,
a validation profile was created. In this profile, the temperature and
SoC of the battery are simultaneously varied (note that the temper-
ature control is done using an environmental chamber instead of
Peltier junction because of its programmability). Initially, the SoC
of the battery is set to 90%. Then the battery is soaked at −5 ◦C for
more than 3 h. Next, a short driving cycle extracted from a mea-
sured HEV dataset is suitably rescaled as shown in Fig. 14. The
current sequence was selected so that its net effect results in a 5%
decrease in SoC. By repeating this cycle 12 times, the SoC of the
battery is decreased from 90% to approximately 30% as shown in
Fig. 15. Meanwhile, the temperature of the environmental chamber
is slowly ramped up to 40 ◦C and then back down to 25 ◦C (Fig. 16).
This profile simulates a common case of PHEV driving where a vehi-

cle which has been parked overnight in subzero temperatures is
used for commuting. The temperature rise corresponds to the tem-
perature control on the battery pack in the vehicle warming up
the battery after the vehicle is started. Because the temperature
is varied continuously, this realistic profile can test the validity

Fig. 15. SoC variation for the validation profile.
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Fig. 16. Temperature variation of the validation profile.
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Fig. 17. Histogram of the error distribution over the validation dataset.

f the model at temperatures not specifically modeled. In other
ords, this procedure validates the interpolation process for the
oefficients.
Over this entire profile, the RMS error in the model is less than

6 mV, which is very good for the temperatures considered; Fig. 17
hows the distribution of the errors in the form of a histogram. The
istribution is Gaussian-like, suggesting that the model captured
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the desired responses. With errors of this size, model-based SoC
and SoH estimators using this model can be designed with very
good results.

5. Conclusion

In this work, a complete set of procedures is provided for iden-
tification of equivalent circuit battery models that can be used in
automotive applications. The results of a modeling exercise con-
ducted on an 26650 A123 lithium ion iron–phosphate battery show
good response over a large range of SoC and temperature (on both
the modeling dataset and a separate validation dataset). Because
the model is a control-oriented model, various model-based algo-
rithms used for SoC and SoH estimation problems can be readily
adapted to use with this model. Furthermore, the model itself is
useful in P/HEV simulators.

This approach to battery modeling offers several contributions.
First, all parameters of the battery are identified from one rich
dataset that contains the necessary parameter and temporal varia-
tions. Therefore the identification procedure is overall efficient and
requires little user interaction. Secondly, the use of linear spline
functions for model coefficient parametrization allows an assump-
tion of arbitraty shapes for the coefficient functions, while being
very easy to optimize. Finally, several useful and practical tips
are presented to make data-taking systematic and accurate and
to reduce undesired numerical issues that can occur during the
identification process.
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